The unicity of types for depth-zero supercuspidal representations
نویسندگان
چکیده
منابع مشابه
The Unicity of Types for Depth-zero Supercuspidal Representations
We establish the unicity of types for depth-zero supercuspidal representations of an arbitrary p-adic group G, showing that each depth-zero supercuspidal representation of G contains a unique conjugacy class of typical representations of maximal compact subgroups of G. As a corollary, we obtain an inertial Langlands correspondence for these representations via the Langlands correspondence of De...
متن کاملTypes for supercuspidal representations of GL(N)
We recall here the basic definitions needed to construct simple types, with no proofs given of the many claims that we make. For a much more detailed account, see [1] and the many other sources cited therein. Note that most of the statements made here could be proven without much difficulty for the reader who has the time and inclination. Any statements requiring a much more elaborate proof are...
متن کاملRefined Anisotropic K-types and Supercuspidal Representations
Let G be any connected reductive group defined over a nonarchimedean local field F of residual characteristic p. Under some tameness assumptions on G, we construct families of positive-depth supercuspidal representations of G = G(F ). In particular, we classify (§2.7) the representations of G that contain any anisotropic unrefined minimal K-type (in the sense of MoyPrasad [28]) that satisfies a...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولConstruction of Tame Supercuspidal Representations
The notion of depth is defined by Moy-Prasad [MP2]. The notion of a generic character will be defined in §9. When G = GLn or G is the multiplicative group of a central division algebra of dimension n with (n, p) = 1, our generic characters are just the generic characters in [My] (where the definition is due to Kutzko). Moreover, in these cases, our construction literally specializes to Howe’s c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2017
ISSN: 1088-4165
DOI: 10.1090/ert/511